
Appendix: Glish Syntax and Grammar

The Glish syntax is free-form. Comments begin with # and

extend to the end of the line. Statements are formally termi-

nated with semi-colons but in general Glish is able to infer

the end of a statement and supply an implicit terminator at

the end of a line. Identifiers are case-sensitive; record field

names and event names have separate name spaces and may

include keywords.

In the following grammar,[]’s surround optional elements

and {}’s surround elements that may occur zero or more

times. Terminals are surrounded with quotes or appear in

uppercase.

program: { stmt }

stmt: "{" { stmt } "}"
| WHENEVER ev-list DO stmt ";"
| LINK ev-list TO ev-list ";"
| UNLINK ev-list TO ev-list ";"
| AWAIT ev-list ";"
| AWAIT ONLY ev-list

[EXCEPT ev-list] ";"
| event "(" [param-list] ")" ";"
| IF "(" expr ")" stmt

[ELSE stmt]
| FOR "(" ID IN expr ")" stmt
| WHILE "(" expr ")" stmt
| NEXT ";"
| BREAK ";"
| RETURN [expr] ";"
| EXIT [expr] ";"
| PRINT [param-list] ";"
| LOCAL id-list ";"
| expr ":=" expr ";"
| expr ";"
| ";"

expr: "(" expr ")"
| expr logop expr
| expr relop expr
| expr arithop expr
| expr ":" expr
| expr "[" expr "]"
| expr "(" [param-list] ")"
| expr "." FIELD-ID
| unaryop expr
| "[" "=" "]"
| "[" [param-list] "]"
| function
| LASTEVENT
| ID
| CONSTANT

logop: "|" | "||" | "&" | "&&"
relop: "==" | "!=" | "<" | "<="

| ">" | ">="
arithop: "+" | "-" | "*" | "/"

| "%" | "ˆ"
unaryop: "-" | "+" | "!" | ref-type

function: func-head "(" [formal-list] ")"
func-body

func-head: FUNCTION [ID]
| SUBSEQUENCE [ID]

func-body: "{" { stmt } "}"
| expr

formal: [ref-type] ID ["=" expr]
| "..."

ref-type: VAL | REF | CONST

param: expr
| ID "=" expr
| "..."

event: expr "->" EVENT-ID
| expr "->" "[" expr "]"
| expr "->" "*"

ev-list: event ["," ev-list]
id-list: ID ["," id-list]
param-list: param ["," param-list]
formal-list: formal ["," formal-list]

15

ing the system design, our experiences to date have convinced

us that with our software bus “shell” we have in place a firm

foundation for building distributed applications.

11 Acknowledgements

We would like to thank our ISTK collaborators for their input

and feedback on the design and use of Glish, especially Matt

Fryer, Matthew Kane, and Mike Allen.

We would also like to thank Steve McCanne, Lindsay

Schachinger, Matt Fryer, and the referees for their many help-

ful comments on various drafts of this paper.

For the curious, the Glish language was named by the sec-

ond author so that when upper management types ask, “What

language is this stuff written in?” we can reply, “In Glish, of

course!”

References

[BCW88] Richard A. Becker, John M. Chambers and

Allan R. Wilks, “The New S Language”,

Wadsworth & Brooks, Pacific Grove, CA,

1988.

[Cagan90] Martin R. Cagan, The HP SoftBench Environ-

ment: An Architecture for a New Generation

of Software Tools, Hewlett-Packard Journal,

41(3), pp. 36-47, June, 1990.

[CG89] Nicholas Carriero and David Gelernter, Linda

in Context, Communications of the ACM,

32(4), pp. 444-458, April, 1989.

[Fromme90] Brian D. Fromme, HP Encapsulator: Bridg-

ing the Generation Gap, Hewlett-Packard

Journal, 41(3), pp. 59-68, June, 1990.

[HGJMLR89] D. E. Hall, W. H. Greiman, W. F. Johnston,

A. X. Merola, S. C. Loken and D. W. Robert-

son, “The Software Bus: A Vision for Scien-

tific Software Development”, Proceedings of

the International Conference on Computing in

High Energy Physics, Oxford, England, 1989.

[KMN89] Jeff Kramer, Jeff Magee and Keng Ng, Graph-

ical Configuration Programming, IEEE Com-

puter, 22(10), pp. 53-65, October, 1989.

[MKS89] Jeff Magee, Jeff Kramer and Morris Sloman,

Constructing Distributed Systems in Conic,

IEEE Transactions on Software Engineering,

15(6), pp. 663-675, June, 1989.

[Ouster90] John K. Ousterhout, “Tcl: An Embeddable

Command Language”, Proceedings of the

1990 USENIX Winter Conference, Washing-

ton, D.C., January, 1990.

[PSAK90] V. Paxson, C. Saltmarsh, M. Allen and

M. Kane, A Language, Server and C++ Class

Library for Event Sequencing, Nuclear In-

struments and Methods in Physics Research,

A293, pp. 356-362, 1990.

[Reiss90] Steven P. Reiss, Connecting Tools Using Mes-

sage Passing in the Field Environment, IEEE

Software, 7(4), pp. 57-66, July, 1990.

[Scott87] Michael L. Scott, Language Support for

Loosely Coupled Distributed Programs, IEEE

Transactions on Software Engineering, 13(1),

pp. 88-103, January, 1987.

[Skeen92] Dale Skeen, “An Information Bus Architec-

ture for Large-Scale, Decision-Support Envi-

ronments”, Proceedings of the 1992 USENIX

Winter Conference, San Francisco, CA, Jan-

uary, 1992.

[UCAR91] University Corporation for Atmospheric Re-

search, “NetCDF User’s Guide”, available

via anonymous ftp; retrieve pub/netcdf.tar.Z

from host unidata.ucar.edu.

[WS91] Larry Wall and Randal Schwartz, “Program-

ming Perl”, O’Reilly & Associates, Se-

bastopol, CA, 1991.

Author Information

Vern Paxson holds an M.S. degree in computer science from

U.C. Berkeley. He has been on the staff at the Lawrence

Berkeley Laboratory since 1985, primarily working on soft-

ware for accelerator physics simulation and control. Since

1991 he has also been a Ph.D. student at U.C.B. in the area

of wide-area networking. Vern’s claim to net-fame is as the

author of flex, a high-performance lex rewrite. Reach him at

vern@ee.lbl.gov.

Chris Saltmarsh obtained his doctorate at Nottingham Uni-

versity in cosmic ray physics, and then worked at CERN,

firstly on the NA7 pion form factor experiment and then in

the operations and machine physics groups of the Super Pro-

ton Synchrotron. He moved to the U.S. some 5 years ago to

work with the Central Design Group of the Superconduct-

ing Super Collider and is presently with the SSCL work-

ing from the Lawrence Berkeley Laboratory. Reach him at

salty@largo.lbl.gov.

Both authors can be reached via U.S. mail at Lawrence

Berkeley Laboratory, MS 46-A/1123, 1 Cyclotron Rd., Berke-

ley, CA 94720.

14

client connected via Ethernet, we found real-times (exclud-

ing startup overhead for running the remote daemon) aver-

aging 7.3 seconds for empty events and 26.2 seconds for

8KB-events. These values correspond to about 275 empty

events/sec, 75 8KB-events/sec, and a data rate of 300 KB/sec,

about 25% of the raw Ethernet bandwidth.

Note that these rates correspond to the performance avail-

able when using point-to-point links. Forwarding events via

the Glish interpreter halves the rates.

8 Related Work

It is widely held ([Scott87, CG89, MKS89, Cagan90,

Reiss90]) that to build flexible distributed systems the indi-

vidual programs in the system should have no knowledge of

the inter-program connections (i.e., where their input comes

from and where their output goes to). Extending this notion

with self-describing data to form a “software bus” is discussed

in [HGJMLR89] and [Skeen92], the former a “concept” paper

and the latter a description of a proprietary system.

Many approaches to building distributed systems rely on

special operating system support or writing client programs

in specialized languages. For our purposes it was important

that the system be portable between different Unix systems

without kernel modifications, and that we be able to incorpo-

rate into the system existing programs written in C, C++, or

Fortran.

Four systems that work with little operating system sup-

port and can integrate existing programs are Tcl [Ouster90],

HP Softbench [Cagan90], Linda [CG89], and Field [Reiss90].

Tcl and Field limit interprocess communication to strings,

making efficient communication of binary data problematic.

Tcl also does not provide mechanisms for starting new pro-

cesses. HP Softbench communicates data via the file system,

requiring operating system support for network communica-

tion. (The related HP Encapsulator [Fromme90], though,

provides a nice way to integrate existing programs into the

system.)

The essence of all of these systems is enabling event “pro-

ducers” and event “consumers” to find one another and com-

municate. Glish’s main contribution is that it also provides

a powerful language for manipulating both interprocess con-

nections and the contents of the data passed between pro-

grams. In this respect Glish makes it easy to integrate pro-

grams with different interfaces; Glish provides the “glue” to

bridge the differences between what one program generates

and what another program expects.

9 Present Status

What we have described is the third generation of Glish

(the first, very different implementation is discussed in

[PSAK90]). We found that redesigning the language twice,

while painful, greatly clarified and enriched it in result. Glish

now has the flexibility to accommodate our simulation and

control applications. Glish is used to control testing of super-

conducting magnets at the Superconducting Super Collider

Laboratory (SSCL) and for analysis, simulation, and control

of the Advanced Light Source accelerator at the Lawrence

Berkeley Laboratory (LBL). Its use has been growing and we

anticipate continued evolution of the system.

The current release of Glish is version 2.1. Source code can

be retrieved via anonymous ftp to ftp.ee.lbl.gov. The

current release includes all of the features described above ex-

cept that client event values whose types are functions, agents,

or references are not yet supported. The release includes the

SDS layer used for communication between heterogeneous

architectures. The SDS code is quite old and never made it

out of prototype because of its success; we are rewriting it.

Glish is part of ISTK (Integrated Scientific Toolkit), a soft-

ware package developed primarily by SSCL and LBL. ISTK

includes a class library for creating objects that automatically

change their value when Glish events are received, and send

out new Glish events when their value are changed by other

means (such as a user-interface). ISTK also includes a corre-

sponding graphics library for building user-interfaces, mak-

ing it simple to tie buttons to arbitrary multiprocess actions,

or to automatically update displays when the data they re-

flect has been altered by another Glish client (or the Glish

script itself). Along with these libraries ISTK also includes

Glish-related applications such as a program for multiplexing

string-valued Glish events and keyboard input into terminal-

based programs, and a program for displaying Glish events as

they are sent between clients. ISTK is not yet ready for gen-

eral release, though interested parties may contact the second

author for further information.

10 Future Work

A powerful addition to Glish would be having Glish clients

“register” the events they respond to along with type signa-

tures for those events, similar to the use of message patterns

in Field, HP SoftBench, and Linda. Glish could then auto-

matically connect together clients with similar event patterns,

providing any necessary glue for accommodating differences.

By including a “help” string with each registered event, the

system could also interactively give the user help and type

information on all events generated by all available clients. It

then becomes possible to write a visual interface for compos-

ing Glish scripts, similar to that for Conic [KMN89].

Other areas to explore are using shared memory for same-

host communication (the SDS layer already supports this),

out-of-band and prioritized events, richer exception handling

than just fail events, and mechanisms for connecting mul-

tiple Glish interpreters together via events.

While we need more experience using Glish before finaliz-

13

#include <string.h>

#include "Glish/Client.h"

== Computes the FFT of the first “len” elements of “in”, returning

== the real part in “real” and the imaginary part in “imag”.

extern void fft(double� in, int len, double� real, double� imag);

int main(int argc, char�� argv)

f

Client c(argc, argv);

GlishEvent� e;

while ((e = c.NextEvent()))

f

if (! strcmp(e�>name, "fft"))

f == an “fft” event

Value� val = e�>value;

== Make sure the value’s type is “double”.

val�>Polymorph(TYPE DOUBLE);

int num = val�>Length();

== Get a pointer to the individual elements.

double� elements = val�>DoublePtr();

== Create arrays for results.

double� real = new double[num];

double� imag = new double[num];

== Compute the FFT.

fft(elements, num, real, imag);

== Create a record for returning the

== two arrays.

Value� r = create record();

r�>SetField("real", real, num);

r�>SetField("imag", imag, num);

c.PostEvent("answer", r);

Unref(r);

g

else

c.Unrecognized();

g

return 0;

g

Figure 5: Glish Wrapper for FFT Client

12

int main(int argc, char** argv)
{
Client c(argc, argv);
...

The Client class provides three main member functions:

� NextEvent waits for the next event to arrive and re-

turns its name and a corresponding Value object. The

event is returned as a pointer to a GlishEvent object,

which is simply a structure withname andvalue fields.

� PostEvent takes a string and a Value object and sends

an event with the given name and value.

� Unrecognized is used to report that the current event

is not recognized by the Glish client.

The class also provides variants on PostEvent for send-

ing events with simple string values. In addition, the class

provides access to the file descriptors from which it reads

events, so the program can use select to multiplex between

different input sources.

If the program was not invoked by the Glish interpreter

then the special arguments will be missing. The Client library

detects this case and knows that the program is running stand-

alone, in which case it reads string-valued events from stdin

and “posts” outbound events to stdout. This behavior allows

client programs to be debugged separate from running within

Glish.

5.3 An Example of a Client

Suppose we want to create an “FFT server”: a Glish client

that when sent a numerically-valued fft event computes the

FFT of the array of data and returns the result as an answer
event. The result consists of a record with two fields, real
andimag, arrays of the real and imaginary parts of the Fourier

transform.

Assume we have a function fft available for doing the actual

transformation and want to “wrap” a Glish client interface

around this function. Figure 5.3 shows how we would do so.

First we create a Client object using the idiom discussed in

Section 5.2. We then enter the event-loop, blocking until a

new event is ready (NextEvent returns a nil pointer when

the client should terminate).

If the event’s name isfft then we extract the event’s value,

convert it to “double” if it is not already, and extract its length

into num. We then use DoublePtr to get a pointer to the

actual array of double-precision elements. In order to call fft

we need to also pass it arrays where it should put its results, so

we create real and imag. After computing the FFT we create

in r a Glish record value to hold the two arrays, and assign

them to r’s real and imag fields. We then send this aggre-

gate value as a Glish event with the name answer. Now that

we’re done with r we Unref it to reclaim its memory. This

will automatically result in real and imag’s memory being re-

claimed too. We don’t need to Unref the GlishEvent pointed

to by e because the next call to NextEvent automatically

does so.

Finally, if the event wasn’t fft then we inform the Client

library that we don’t recognize this particular event.

6 Implementation

The Glish language is implemented as an interpreter, written

in about 10,000 lines of C++. It runs on SunOS, Ultrix, and

HP/UX platforms; Glish clients can also run on VxWorks,

using a limited client library written in C instead of C++.

We chose an interpreter implementation because it gives

very fast turn-around times when modifying scripts, as well

as the ability to run interactively. The interpreter is optimized

to perform array-wise operations in tight loops, making its

overhead acceptable.

In general inter-client communication goes through the in-

terpreter; the design is centralized, much like the designs of

Field [Reiss90] and HP SoftBench [Cagan90]. Remote com-

munication occurs via TCP sockets, assuring reliable delivery

of events, while local communication uses pipes for added

performance. Point-to-point links enable faster but less flex-

ible communication. We implemented them using named

pipes for same-host communication and sockets for remote

communication.

To create clients on a remote host the interpreter first re-

motely executes a daemon on that host to execute and control

processes on its behalf, much like the SPC daemon used by

HP SoftBench. All event communication with remote clients

is still done directly between the client and the interpreter via

a socket connection.

Event values are sent using a self-describing dataset for-

mat called SDS, similar to netCDF [UCAR91]. SDS han-

dles padding, byte-swapping, and floating-point representa-

tion differences, so it can be used to efficiently transmit bi-

nary data between heterogeneous architectures (e.g., VAXand

SPARC). The SDS layer is written in C (about 9,000 lines).

7 Performance

To give a feel for Glish’s performance, on an unloaded Sparc-

station 2 sending an empty event back and forth to a “ping”

client on the same machine for 1,000 round trips takes an av-

erage of 6.5 real-time seconds, for an event rate of around 300

events per second. Sending 8KB-events takes an average of

10.3 real-time seconds, for a rate of about 200/sec and a data

rate of 800 KB/sec. The CPU times (user + system) were

about 60% of the real-time timings.

When making the same timings between a Sparcstation 2

running the Glish interpreter and a Sun IPC running the “ping”

11

subsequence power(exponent)
{
whenever self->compute do

self->ready($value ˆ exponent)
}

square := power(2)
cube := power(3)

square->compute(6)
cube->compute([2, 5, 10.1])

whenever square->ready, cube->ready do
print $value

Figure 4: Example of a Glish Subsequence

The final way to create an agent is using a subsequence.

A subsequence is just like a function except that when called

it returns an agent value, which can be used to send and re-

ceive events to and from the subsequence. In the body of a

subsequence the predefined variable self refers to its agent

value. For example, the script shown in Figure 4 creates

two subsequences. When executed it prints 36 followed by

[8 125 1030.3].

The first set of statements defines power as a subsequence

that is invoked with an argument exponent and responds to

compute events by generating a ready event whose value

is the value of the compute event raised to the given ex-

ponent. The two assignments bind square and cube to

agents corresponding to different instances of power. The

next two statements send those agents compute events with

a single integer value and a three-element double-precision

array value, respectively. The final whenever statement

prints the value of any ready events generated by square
or cube.

5 The Client Library

Programs interface to the Glish system via the Glish “Client”

library, which is written in C++. The library exports two

classes: Value and Client. Value objects correspond with

Glish values: they are dynamically typed arrays, records,

functions, or agents. The Client class provides the mecha-

nism for a Glish client to send and receive events.

5.1 The Value Class

Value objects can be constructed from C++ scalars or arrays.

For example,

Value* v = new Value(5);

assigns to v a Value object representing the integer 5, while

double* x = new double[3];
x[0] = 1.0;
x[1] = 3.14;
x[2] = 4.56;
Value* v = new Value(x, 3);

assigns to v the equivalent of the Glish value [1, 3.14,
4.56]. By default, Value objects constructed from arrays

“take over” the array: they will realloc the array if it grows

larger and delete it when the Value object is destroyed. The

class library also provides mechanisms for specifying that an

array should not be altered or should first be copied.

The Value class provides a number of member functions

for manipulating values:

� Type returns the type of an object and Length its

length.

� IntVal interprets one element of the value as a single

integer, performing coercions as necessary, and similar

functions are provided for boolean, floating-point, and

string interpretations.

� IntPtr returns a pointer to a C++ array of integers that

can then be used for direct access to the value’s underly-

ing elements, while CoerceToIntArray returns ei-

ther the underlying array if already of type integer or else

a copy of the array converted to integer. Again, these

functions have counterparts for the other Glish types.

� Polymorph converts the value from its present type to

a new type.

� Analogs to these functions are available for directly ac-

cessing and setting a record’s fields.

� The (non-member) function create record returns

a new, empty record.

A key point concerning the Value class is that it makes it

easy to wrap Glish values around an existing program’s data

structures. These data structures can then be made available

to other programs by sending them as event values.

Note also that both the Value and Client classes use

reference-counting for memory management. The Ref and

Unref functions manipulate each object’s reference count.

When the count reaches zero the object is deleted and any

objects it refers to are Unref’d.

5.2 The Client Class

Each Glish client constructs one instance of the Client class

by passing the Client constructor the program’s argc and

argv. When a Glish client is executed by a Glish script

argv contains special arguments telling the Client object how

to connect the Glish interpreter. So usually the beginning of

a Glish client looks like:

10

After an await, $agent, $name, and $value corre-

spond to the event that caused the await to finish. In

the above example, $agent will be c, $name will be

"compute done", and $value will be whatever value

the compute done event had.

Any other events that arrive during an await are still pro-

cessed by Glish (i.e., it executes the body of any correspond-

ingwhenever statements). Anawait only statement can

be used to tell Glish to drop these events instead. It is meant

for use as a “hold-point”, to freeze the effective execution of

a Glish script until some seminal event occurs. Glish also

provides a mechanism for listing exceptions to this rule, so

that certain high-priority events will still be processed during

an await only.

4.6 Point-to-Point Communication

Sometimes in a Glish system two clients need to communicate

as fast as possible. If the system’s Glish script only forwards

events from one client to the other without modifying the

events’ values then we can instead use a direct connection

between the two. Glish supports this style of communication

using the link statement. When executed a link statement

directs a client to send a particular event it generates directly

to another client (perhaps renaming it). For example,

link t->transformed_data to
d->new_data

will cause the client associated with t to send its

transformed data events directly to d’s client, which

will see them as new data events. (Other events generated

by t’s client still go to the Glish interpreter.) The destination

of a link can use the “*” event to mean “use the same name”:

link t->transformed_data to d->*

will send the transformed data events along without

renaming them.

You can suspend point-to-point links with the unlink
statement:

unlink t->transformed_data to
d->new_data

suspends the link formed in the first example above. t’s agent

will now instead send its transformed data events to

the Glish interpreter, which will execute the corresponding

whenever bodies. Executing another link statement re-

stores the point-to-point link.

4.7 Creating Agents

Agent values can be created three different ways. First, the

predefined function client takes an argv-style list of strings

and instantiates the corresponding program with the given ar-

guments. client also has optional arguments for specifying

on which host to run the process and whether to initially sus-

pend the process to allow a debugger to be attached. For

example,

t := client("timer", 5, host="psychosis")

runs the Glish client timer on the remote host “psychosis”

with an argument of 5 (for “timer” this is the timer interval

in seconds) and assigns to t an agent value corresponding to

this process.

Another way to create an agent is to use theshell function

with the optional argumentasync=T (T is the boolean “true”

constant). Asynchronous shell clients can be sent stdin
events to make text appear on their standard input, EOF events

to close their standard input, and terminate events to ter-

minate them. Each line of text they write to their standard

output becomes a stdout event.

For example, here’s a Glish script that uses awk to print the

numbers from 1 to 32 in hexadecimal, each appearing as a

separate event:

cvt := "awk ’{ printf(\"%x\\n\", $1) }’"
hex := shell(cvt, async=T)

count := 1
hex->stdin(count)

whenever hex->stdout do
{
print count, "=", $value
if (count < 32)

{
count := count + 1
hex->stdin(count)
}

else
hex->EOF()

}

The first two statements associate an asynchronous shell client

with the variable hex. The next line initializes the global

count to 1 and sends that value to hex, making it appear on

awk’s standard input.

The whenever body prints out the current count and its

hexadecimal equivalent, and then either increments the count

and sends awk a new input line or closes its standard input.

Because Glish uses pseudo-ttys to communicate with asyn-

chronous shell clients, awk’s output will be line-buffered, so

each stdin event will shortly result in a new stdout event.

One might think that a race exists between sending the first

stdin event to hex’s client and setting up the whenever
to deal with the client’s response. This problem does not

arise, however, because the Glish interpreter does not read

events generated by clients until it is done executing all of the

statements in a script.

9

a->foo("value1", 2)

sends an event with two values, the string "value1" and

the integer 2. The values can also be named:

a->foo(x="xval", y=5)

sends an event with the “parameter” x equal to "xval" and

y equal to 5. Multi-valued events are equivalent to passing

a single-valued event where the value is a record. This last

example is equivalent to:

a->foo([x="xval", y=5])

The event name in a -> operation needn’t be fixed in ad-

vanced. Instead you can use any string-valued expression by

enclosing it within brackets ([]’s). The following are equiv-

alent:

a->foo(5)
a->["foo"](5)

and here is one way to send a three events, foo, bar and

bletch, with values of 1, 2, and 3:

for (i in 1:3)
a->["foo bar bletch"[i]](i)

(Recall that "foo bar bletch" is a three-element array

of strings.)

One major difference between sending an event and call-

ing a function is that sending an event is an asynchronous

operation. As soon as Glish has sent the event it proceeds

to execute the next statement in the Glish script. Events can

be sent synchronously using the await statement, which we

discuss in Section 4.5 below.

4.4 Receiving Events from Agents

Again, suppose that a is a variable with an agent value. In

a Glish program you can respond to events that a generates

using a whenever statement. Once executed,

a := client("demo")
whenever a->bar do

print "got a bar event"

will print "got a bar event" every time demo generates

a bar event.

The value of the most recently received event is kept in a

special variable $value:

whenever a->bar do
print "got a bar event =", $value

will display the value of each bar event that a generates.

Agent values are also records, and the most recent value of

each event is available as a field in the record. For example,

the print statement in the whenever above could also

have been written:

print "got a bar event =", a.bar

The value persists in a.bar until a generates another bar
event, at which point a.bar is updated to reflect the new

event’s value.

Just as when sending events you can use a string-valued

expression to name an event, so can you with whenever:

whenever a->["foo bar bletch"] do
print $value

will print the value of each foo, bar, and bletch event

generated by the agent a.

Finally, “*” can be used to indicate every event:

whenever a->* do
print $value

prints the value of every event a generates.

Along with $value, two other special variables are avail-

able in the body of a whenever: $name holds the name of

the event and $agent is a reference to the agent that gener-

ated it. For example, the following function:

function setup_relay(src, ref dest)
{
whenever src->* do

dest->[$name]($value)
}

executes a whenever statement relaying every event gener-

ated by the agent src to the agent dest. (dest has to be

declared a ref parameter since sending an event to an agent

is considered to modify the agent.) Note that the whenever
statement “persists” even after a call to setup relay re-

turns.

There is no restriction on the body of a whenever. It can

include function calls, agent creation, and further whenever
statements, for example.

4.5 Receiving Events Synchronously

An await statement instructs Glish to wait for an event to

occur. Glish pauses program execution until this happens.

For example, suppose that c refers to a client that when sent a

compute request performs some computation and generates

a compute done event when finished. If after you tell c’s

client to do its computation you want to wait for the result,

you could use:

c->compute()
await c->compute_done

at this point, c is done
with its computation

8

then when diff is called with only one argument b will be

set to 1. So the call diff(3, 7) returns -4, and the call

diff(3) returns 2.

In a function call you can also give the function arguments

by name instead of positionally:

diff(b=4, a=7)

returns 3, since 7 � 4 = 3.

The function definition above assigns a function value to

the global variable diff. Functions can also be assigned to

local variables and record fields:

data.transform :=
function(x) log(x)/log(2)

assigns to the data record’s transform field a function

that returns log2 of its argument.

Arguments to Glish functions can be passed by value, by

reference, or by const reference (the default), by preced-

ing the argument’s name in the function definition with val,

ref, or const. Passing by reference allows Glish functions

to deal with large values efficiently. Glish also supports vari-

able argument lists, which are useful for writing “wrapper”

functions that call other functions. For example,

function psych_client(...)
client(..., host="psychosis")

defines a function that when called creates a Glish client on

the remote host “psychosis”.

One particularly useful predefined function is shell,

which interprets its arguments as a Bourne shell command

line and returns the output from running the command (op-

tionally on a remote host) as a string value. For example,

csh_man := shell("man csh")

assigns to the variable csh_man a string array, each element

corresponding to one line of the “csh” manual page, and

function to_lower(x)
shell("tr A-Z a-z", input=x,

host="cruncher")

returns its argument converted to lower-case, doing the work

on the remote host “cruncher”.

The function keyword can be abbreviated as func.

4 Events and Agents

Glish’s main purpose is to coordinate a number of processes

that form a distributed system. These processes are instances

of programs written in compiled languages such as C or C++.

Each program is written in an event-oriented style; the pro-

gram’s sole view of the rest of the system comes from the

events it receives, and its sole mechanism for communicat-

ing its state and results to the system is by generating more

events. The programs have no knowledge of what other pro-

grams the system includes, or what is done with their results,

or where received events came from. The event-oriented style

lends itself to creating modular programs that you can connect

together in novel ways. You make these connections using

Glish.

We deal with the details of how programs themselves re-

ceive, interpret, and generate events later in Section 5. Here

we focus on manipulating events from within a Glish program.

4.1 What is an “Event”?

An event has a name and an associated value. The name is

simply an identifier, much like a variable’s name. The value

can be any Glish value, of any type: numeric, string, record,

reference, agent, or function. We might speak of “afoo event

with value [3, 2, 5]” to mean an event whose name is

“foo” and value the three-element integer array [3, 2, 5].

4.2 Agents

An agent is an entity that generates and responds to events.

Typically it’s a process running either locally or on a remote

computer; these agents are called clients.

Agents generate events in order to communicate with the

rest of the world, namely the Glish script and any other agents

the script may have created. By saying that agents respond

to events we mean that they expect to receive events with

certain names, and when they do they perform some action

based on the name and value of the event. The action may

entail generating one or more new events or may not.

Glish predefines several events for every agent:

established is generated when an agent first begins run-

ning; unrecognized is generated when an agent does not

recognize an event sent to it; done is generated when the

agent finishes successfully; fail is generated on behalf of

an agent that terminates abnormally (e.g., due to a bus er-

ror); and terminate can be sent to any agent to tell it to

exit. These events form the mechanism by which agents are

controlled and errors detected.

4.3 Sending Events to Agents

Suppose that a is a Glish variable with an agent value. You

can send an event to a’s agent using the -> operator. Execut-

ing:

a := client("demo")
a->foo([1, 4, 6])

first associates a with an instance of the program demo run-

ning on the local host, and then sends a foo event to a’s agent

(i.e., demo) with a value of [1, 4, 6].

Sending an event is in some ways similar to making a func-

tion call. In particular, we can send more than one value:

7

3.3 Records

You can package together a collection of values into a record:

r := [a="hello", b=11:20]

assigns to r a record with two fields: r.a designates the

scalar string "hello", while r.b designates a ten-element

integer array. You can also create records by directly assign-

ing to a field:

s.constants := [3.14159, 2.71828]

creates a new record s and initializes its constants field

to an array of two double-precision values.

Besides using the “.” operator, you can also access record

fields using string-valued array indices:

print s["constants"][2]

prints 2.71828. Record fields can also be referred to using

integer indices:

print r[2]

prints the integers from 11 to 20.

3.4 Multi-Element Indexing

Glish provides ways for accessing or modifying more than

one array element (or record field) at a time. For example,

you can use an integer array as an index into another array:

a := [9, -3, 0, 7, 5]
b := [4,2]
print a[b]

prints [7, -3]. Since the “:” operator yields an integer ar-

ray, you can use it to access a contiguous sequence of elements

in an array: a[3:5] yields [0, 7, 5].

You can use a boolean array as a mask for selecting which

elements you want from the array:

print x[x >= 4 & x <= 12]

prints all the elements of x with values between 4 and 12.

Both integer and boolean array indices can also be used to

assign to a subset of an array’s elements:

x[x < 0] := -x[x < 0]

negates all of the negative elements in x, and

rev_x := x[len(x):1]

creates in rev x a copy of x with the elements in reverse

order.

You can select a subset of a record’s field in a similar fash-

ion:

r := [a=1, b="hi", c=9.3]
s := r["b c"]

assigns to s a record with two fields, the b and c fields of r.

3.5 References

A reference is a mechanism for two variables to share the

same storage for their values. References are created using

the ref or const operators. You can use ref references to

both access and modify the variable; with const references

you can only access the variable.

For example,

a := 1:5
b := ref a
b[2] := 9
print a

prints [1 9 3 4 5].

An important point, though, is that while a and b refer

to the same underlying storage, assigning either of them to

another value breaks the connection between the two. If we

do:

a := 1:5

then a will go back to equaling [1 2 3 4 5] while b will

remain equal to [1 9 3 4 5].

The reference connection can be maintained, however, by

explicitly stating that you want to do so by using the val
operator. For example, after executing:

c := [1, 3, 7, 12]
d := ref c
val c := "hello there"

the value of d (and of course c) will be the two-element string

"hello there".

3.6 Functions

Glish provides a flexible mechanism for defining and calling

functions. These functions are a data type; they can be as-

signed to variables or record fields, passed as arguments to

other functions, and returned as results of functions. A func-

tion body can be either an expression or a block of statements.

Here’s a simple example of a function that prints its arguments

and then returns their difference:

function diff(a, b)
{
print "a =", a
print "b =", b
return a - b
}

You can make arguments optional by specifying default values

for them. If in the above example we replaced the first line

with:

function diff(a, b=1)

6

and pass it along to display.

These examples illustrate the main goals of Glish: making

it easy to dynamically connect together processes in a dis-

tributed system, and providing powerful ways to manipulate

the data sent between the processes. One other important

point is that because measure, transform, and display are all

written in an event-driven style, each of them can be eas-

ily replaced by a different program that has the same “event

interface”. For our own work (scientific programming) we

often want to replace measure with simulate (a program that

simulates the quantity being measured), display with a non-

interactive program once we have ironed out the measurement

cycle, and transform with a variety of different transforma-

tions. We also might want to run measure and simulate to-

gether, so we can compare simulate’s model with the actual

phenomenon measured by measure. The ability to quickly

“plug in” different programs in this fashion is one of Glish’s

main benefits.

3 The Glish Language

3.1 Overview

The design of the Glish language was heavily influenced by

the S language [BCW88]. Every value is a dynamically-typed

array. The S types included are numerics (boolean, integer,

float, and double, all of which can be freely mixed and coerced

to one another), strings, functions, and records. Record fields

can be accessed using string-valued expressions as well as

with the field-name operator, so records provide a form of

associative array.

We added two more types: references to other values (for

efficiently dealing with large arrays) and agents, which are

event producer/consumers. Agents typically are programs

that have been linked with the Glish Client library (in which

case they are called clients). They can also be shell commands

or Glish “subsequences”, similar to Glish functions.

Two levels of scoping are provided for variables, global

and local to a function. Variables needn’t be declared, except

to explicitly set their scope. There is no “main” function;

statements outside the scope of any function are executed

when the Glish script begins. Here, for example, is the Glish

“hello, world” program:

print "hello, world"

The usual control constructs are provided, along with five

additional types of statements:

� event-send statements for sending events;

� whenever statements for specifying what should hap-

pen when an event is generated;

� await statements for synchronous communication;

� link statements for creating point-to-point communi-

cation links;

� unlink statements for suspending point-to-point links.

These are discussed in Section 4 below.

Glish also provides a number of predefined functions (such

as sqrt, max, sum, all array-oriented) and variables. Exam-

ples of predefined variables are argv, the argument list with

which the script was run, and environ, a record of the envi-

ronment variables. For example, the current user name can be

accessed using environ["USER"] or environ.USER.

3.2 Arrays

Most Glish types correspond to an array of values rather than

a single value. For example,

a := [1, 2, 6]
b := [3, 4, 5]
print a + b

assigns two three-element integer arrays to a and b, and then

prints their element-wise sum: [4, 6, 11]. You can also

mix arrays and scalars (single-element arrays) in expressions:

print a * 2

will print [2, 4, 12]. Glish provides the usual arithmetic

and logical operators; all operate element-by-element on two

arrays of the same size, or, if one of the operands is a scalar,

apply the scalar value to each element in turn.

Arrays automatically grow when you assign to an element

beyond their current end. Given a as above, executing:

a[5] := 4

results in a having the value [1, 2, 6, 0, 4].

Integer arrays can also be created using the built-in “:”

operator, which returns an array of the integers between its

operands. For example,

3:7

is equivalent to

[3, 4, 5, 6, 7]

String arrays can be created by enclosing text within double

quotes. The text is broken into words at each occurrence of

whitespace, which is then discarded:

c := "hello, world"

assigns to c a two-element string array, the first element being

“hello,” and the second element “world”. Text enclosed

in single quotes is treated as a string scalar:

d := ’hello, world’

assigns tod a single-element string value, with the whitespace

preserved.

The length function returns the length of an array. It can

be abbreviated as len.

5

else
d->new_data($value)

}

whenever t->transformed_data do
d->new_data($value)

whenever d->take_data do
m->take_data($value)

whenever d->set_transform do
do_transform := $value

We initialize do transform to T, the boolean “true”

constant. We change it whenever display generates a

set transform event (see the last two lines). When mea-

sure generates a new data event we test the variable to de-

termine whether to pass the event’s value along to transform

or directly to display.

Furthermore, if the data transformation done by transform

is fairly simple, we could skip writing a program to do the

work and instead just use Glish. For example, suppose the

transformation is to find all of the x measurements that are

larger than some threshold, and then to set those x measure-

ments to the threshold value and the corresponding y mea-

surements to 0. We could do the transformation in Glish

using:

m := client("measure", host="mon")
d := client("display")
do_transform := T

if (len(argv) > 0)
thresh := as_double(argv[1])

else
thresh := 1e6

whenever m->new_data do
{
if (do_transform)

{
too_big := $value.x > thresh
$value.x[too_big] := thresh
$value.y[too_big] := 0
}

d->new_data($value)
}

whenever d->take_data do
m->take_data($value)

whenever d->set_transform do
do_transform := $value

Here we first check to see whether any arguments were passed

to the Glish script and if so we initialize thresh to be the

first argument interpreted as a double precision value. If no

arguments were given then we use a default value of one

million.

Now whenever measure generates a new data event and

we want to do the transformation, we set too big to a

boolean mask selecting those x elements that were larger than

thresh. We then set those x elements to the threshold, zero

the corresponding y elements, and pass the result to display as

a new data event. We have eliminated the need for trans-

form.

Finally, for situations in which performance is vital Glish

provides point-to-point links between programs. The link
statement connects events generated by one program directly

to another program. The unlink statement suspends such

a link (further events are sent to the central Glish interpreter)

until another link. Here is the last example written to use

point-to-point links:

m := client("measure", host="mon")
d := client("display")

link m->new_data to d->new_data

if (len(argv) > 0)
thresh := as_double(argv[1])

else
thresh := 1e6

whenever m->new_data do
{
too_big := $value.x > thresh
$value.x[too_big] := thresh
$value.y[too_big] := 0
d->new_data($value)
}

whenever d->take_data do
m->take_data($value)

whenever d->set_transform do
{
if ($value)
unlink m->new_data to d->new_data

else
link m->new_data to d->new_data

}

We now no longer need the do transform variable. In-

stead we initially create a link for measure’s new data
events directly to display. Whenever display sends a

set transform event requesting that the transformation

be activated, we break the direct link between measure and

display. Now when measure generates new data events

they will be sent to Glish, which will then transform the data

4

When Glish executes the first two lines of this script it creates

instances of measure (running on the host “mon”) and display

(running locally) and assigns to the variables m and d values

corresponding to these Glish clients. Executing the next line:

whenever m->new_data do

specifies that whenever the client associated with m generates

a new data event, execute the following statement:

d->new_data($value)

This statement says to send a new event to the client asso-

ciated with d. The event’s name will be new data and the

event’s value is specified by whatever comes inside the paren-

theses; in this case, the special expression $value, indicat-

ing the value of the most recently received event (measure’s

new data event).

The last two lines of the script are analogous; they say that

whenever display generates a take data event an event

with the same name and value should be sent to measure.

Our system could easily be a bit more complicated. Sup-

pose that prior to viewing the measurements with display we

first want to perform some transformation on them. The trans-

formation might for example calibrate the values and scale

them into different units, filter out part of the values, or FFT

the values to convert them into frequency spectra. Rather than

building the transformation into measure, we would like our

system to be modular, so we use a separate program called

transform.

Measure Transform

transformed

DisplayDisplay

take

new data

datadata

Figure 2: Three-Program Distributed System

Figure 2 shows the flow of control and data in this new

system. measure sends its values to transform; transform

derives some transformed values and sends them to display;

and display tells measure when to take more measurements.

With Glish it’s easy to accommodate this change:

m := client("measure", host="mon")
d := client("display")
t := client("transform")

whenever m->new_data do
t->new_data($value)

whenever t->transformed_data do

d->new_data($value)

whenever d->take_data do
m->take_data($value)

The third line runs transform on the local host and as-

signs a corresponding value to the variable t. The first

whenever forwards new data events from measure to

transform; the secondwhenever effectively forwards trans-

form’s transformed data events to display, but changes

the event name to new data, since that’s what display ex-

pects. The third whenever is the same as before.

Measure Transform

Display

DisplayDisplay

Glish

Figure 3: Conceptual Event Flows vs. Actual Flows

An important point in this example is that while conceptu-

ally control and data flow directly from one program to an-

other, in reality all events pass through the Glish interpreter.

Figure 3 illustrates the difference. Here solid lines show the

paths by which events actually travel, while dashed lines indi-

cate the conceptual flow. While this centralized architecture

doubles the cost of simple “point-to-point” communication, it

buys enormous flexibility. For example, suppose sometimes

we want to use transform before viewing the data and other

times we don’t. We add to display another button that lets us

choose between the two. It generates a set transform
event with a boolean value. If the value is true then we

first pass the measurements through transform, otherwise we

don’t.

Toaccommodate this change in our Glish program we could

add a global variable do transform to control whether or

not we use transform:

m := client("measure", host="mon")
t := client("transform")
d := client("display")
do_transform := T

whenever m->new_data do
{
if (do_transform)

t->new_data($value)

3

an “FFT-done” event whose value is two arrays, the Fourier

components of the original data. More generally, programs

can also spontaneously create events in response to external

actions, such as a piece of hardware signalling that some con-

dition has changed, a timer going off, or a person interacting

with a graphical interface.

Our software bus, called Glish, has three parts:

� a C++ class library that programs (Glish clients) link with

so they can generate and receive events and manipulate

structured data;

� the Glish “sequencing” language analogous to perl (but

considerably different in flavor);

� an interpreter process for executing Glish scripts and act-

ing as a central “clearinghouse” for forwarding events

between processes.

The Glish system is very flexible:

� existing programs can be turned into Glish clients either

by writing event-oriented, C++ “wrappers” around them

or by encapsulating their filter behavior using stdin
and stdout events;

� clients in a Glish script can run on different computers,

which can have heterogeneous architectures;

� Glish provides a full programming language for manipu-

lating the events and data generated by and sent to clients.

In the next section we present an example of the type of

systems we want to build with Glish, show how we would

use Glish to construct the system, and then present several

refinements to convey the flavor of the Glish approach. In

Section 3 we give an overview of the more conventional as-

pects of the Glish language and in the following section dis-

cuss those facets of the language concerning event-oriented

interprocess communication.

In Section 5 we discuss the C++ class libraries used to

integrate programs into the Glish system and give an example

of an “FFT” server written using the libraries. The next two

sections discuss the implementation and performance of the

system. We then conclude with an overview of related work,

the present status of the system, and our thoughts on future

work.

2 Example of Building a System Using

Glish

For an idea of the sorts of problems Glish is meant for and how

it’s used to solve them, consider a simple example where we

want to repeatedly view readings generated by an instrument

attached to a remote computer called “mon”. Suppose we

have a program measure that reads values from the special

hardware device and converts them into two floating-point

arrays, x and y. measure needs to run on the remote host

“mon” because that’s where the special hardware resides. We

have another program, display, for plotting the x/y data, which

we want to run on our local workstation. display also has a

“Take Measurements” button that we can click on to instruct

the hardware to take a new set of measurements.

Measure Display

take data

new data

Figure 1: Simple Two-Program Distributed System

The first problem we’re interested in is simply to connect

together measure and display so that when measure produces

new values they’re shown by display, and when we click

the display’s button measure goes off and reads new values.

Figure 1 illustrates the flow of control and data: display tells

measure to take measurements, and measure informs display

when new measurements are available.

To implement even this simple system under Unix requires

constructing a session-layer protocol which then has to be

implemented on top of sockets or RPC. When using Glish,

though, the protocol and the communication mechanism are

built-in. Every program in a Glish system communicates by

generating events, messages with a name and a value. For

our simple system we might write measure so that when-

ever it has new readings available it generates an event called

“new data”. The value of the event will be a record with

two elements, x and y, the two arrays of numbers it has com-

puted from the raw measurements. We would write display so

that when it receives a new data event it expects the value

of the event to be a record with at least x and y fields; it

then plots those values. Similarly, when we push the “Take

Measurements” button display will generate a take data
event, and whenever measure receives a take data event

it will get a new set of readings and generate a newnew data
event.

Here is a Glish script that when executed creates the two

processes, one remotely, and conveys their messages to each

other:

m := client("measure", host="mon")
d := client("display")

whenever m->new_data do
d->new_data($value)

whenever d->take_data do
m->take_data($value)

2

Glish: A User-Level Software Bus for Loosely-Coupled

Distributed Systems

Vern Paxson� and Chris Saltmarshy

Lawrence Berkeley Laboratory

One Cyclotron Road

Berkeley, CA 94720

Abstract

We describe Glish, an interpreted language for building dis-

tributed systems from modular, event-oriented programs.

These programs are written in conventional languages such

as C, C++, or Fortran. Glish scripts can create local and re-

mote processes and control their communication. Glish also

provides a full, array-oriented programming language for ma-

nipulating binary data sent between the processes. In general

Glish uses a centralized communication model where inter-

process communication passes through the Glish interpreter,

allowing dynamic modification and rerouting of data values,

but Glish also supports point-to-point links between processes

when necessary for high performance. Glish is available via

anonymous ftp.

1 Introduction

Muchof the power of Unix stems from the ways in which users

can combine different programs. The notions of standard in-

put and output, pipelines, filter programs, and command shells

all encourage the creation and use of modular programs that

can be “plugged together” in novel ways. Traditionally Unix

command shells have focussed on creating and connecting

together processes. Recently, however, command shells such

as perl [WS91] also provide powerful languages for manip-

ulating the output generated by programs. Often a perl user

can write a considerable portion of a task in perl, rather than

needing to create new filter programs. We might say that in

this regard perl provides better “glue” than previous shells for

connecting together programs.

There are some limits, however, to the power of Unix

pipelines, even when augmented with a shell like perl. Data

in pipelines flows in only one direction; two programs can-

not communicate with each other back and forth. Further-

�Work supported by the U.S. Department of Energy under Contract No.

DE-AC03-76SF00098.
ySuperconducting Super Collider Laboratory, Operated by the Univer-

sities Research Association, Inc., for the U.S. Department of Energy under

Contract No. DE-AC02-89ER40486.

more, the data the programs manipulate is generally limited to

character streams whose structure is column- or line-oriented.

Communicating large quantities of numeric data is inefficient

at best and inaccurate unless care is taken. Communicating

structured data—collections of related values, perhaps with

different types—is particularly difficult.

While it is possible to circumvent these restrictions, the

only support for doing so is at the operating-system-call and

run-time-library level. There is no analog of shell program-

ming for interconnecting processes so they can communicate

in complex ways and share binary, typed data.

Applications such as simulation systems often can be well

modeled as a number of separate processes perhaps running

on different hosts that occasionally send structured data back

and forth; i.e., as loosely-coupled distributed systems. Since

the present facilities in Unix provide little high-level support

for such an approach, one instead often resorts to writing the

system as a set of processes that have considerable knowledge

about what other processes and data structures exist in the

system. This system-specific knowledge makes it difficult

to extend the system in unforeseen ways, so unless one has

a complete understanding of the system requirements at the

outset, one is likely to find the final system uncomfortably

restrictive.

In this paper we discuss a software bus-style solution to

building flexible, loosely-coupled distributed systems. The

main thrust of the software bus approach is that individual

programs should be wholly modular, with no knowledge of

other programs or data types that might exist in the system.

The software bus supplies a uniform way for programs to

communicate without knowing about one another. In our

system, programs are written in terms of events, which are

name/value pairs. In the usual case, programs receive an

event, perform some sort of action in response to the event,

and possibly generate one or more new events associated with

the response. Such programs are similar to RPC servers, ex-

cept that “calls” to the programs are not synchronous. An ex-

ample is an FFT server, which might be sent an event with the

name “please-FFT-this” and an associated value of an array

of double precision data, to which the server in turn generates

1

